If it's not what You are looking for type in the equation solver your own equation and let us solve it.
16x^2+14x-6=0
a = 16; b = 14; c = -6;
Δ = b2-4ac
Δ = 142-4·16·(-6)
Δ = 580
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{580}=\sqrt{4*145}=\sqrt{4}*\sqrt{145}=2\sqrt{145}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(14)-2\sqrt{145}}{2*16}=\frac{-14-2\sqrt{145}}{32} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(14)+2\sqrt{145}}{2*16}=\frac{-14+2\sqrt{145}}{32} $
| -3(15j+18)+18j=3(-10j+8) | | 17=t3+ 15 | | 8.9x-12.7=22.9 | | 64=6c | | 2(x-31=5x+8 | | 7x-5x=180 | | 0=16x^2+18x+15 | | -0.53-9.4h=-0.23-8.4h | | (9m+10)*2=2 | | x-4.62=19.38 | | 2x-31=5x+8 | | 16+x=180 | | -13x-18=-4 | | 13a-5a(8)=0 | | 15c=60,c= | | √2x-5=√x-1 | | -5x+15=1x+1 | | 7b=21,b= | | 8x=128= | | -3x-4x=-2 | | r/8=6.5 | | 13a=26,a= | | 12/8=0.3/mm= | | -1+19w=11w+3 | | -y-y-8=0 | | -7y/8=-21 | | 6x+8=248 | | -7y/8=21 | | 8(-1+m)+3=2(m51/2 | | 4(d+7);=-1 | | -8u=16/3 | | 4x+2=3+4x |